

The Earth System Science Endeavor

- The Earth is an integral, complex system
 - Many processes, with varying time and spatial scales
 - Quantitatively describing the interactions between processes is key
- Measurements must span all important variables, and all important scales
- Research leads to greater understanding, which is codified in numerical models – prediction
- Societal benefits result when understanding is combined with measurements to generate useful information products

Earth Science Division Overview

- Overarching goal: to advance Earth System science, including climate studies, through spaceborne data acquisition, research and analysis, and predictive modeling
- Six major activities:
 - Building and operating Earth observing satellite missions, many with international and interagency partners
 - Making high-quality data products available to the broad science community
 - Conducting and sponsoring cutting-edge research in 6 thematic focus areas
 - Field campaigns to complement satellite measurements
 - Modeling
 - Analyses of non-NASA mission data
 - Applied Science
 - Developing technologies to improve Earth observation capabilities
 - Education and Public Outreach

NASA Operating Research Missions (15)

Missions in Formulation and Implementation

OCO 1/2009

GLORY 6/09

AQUARIUS 5/2010

NPP 6/2010

ICESat-II 2015

SMAP 2012

GPM 6/2013, 11/2014

LDCM likely late 2012

NA

Earth Science Division Overview

- Overarching goal: to advance Earth System science, including climate studies, through spaceborne data acquisition, research and analysis, and predictive modeling
- Six major activities:
 - Building and operating Earth observing satellite missions, many with international and interagency partners
 - Making high-quality data products available to the broad science community
 - Conducting and sponsoring cutting-edge research in 6 thematic focus areas
 - Field campaigns to complement satellite measurements
 - Modeling
 - Analyses of non-NASA mission data
 - Applied Science
 - Developing technologies to improve Earth observation capabilities
 - Education and Public Outreach

Earth SCIENCE Division Focus Areas

Atmospheric Composition

Carbon Cycle and Ecosystems

Climate Variability and Change

Weather

Water and Energy Cycle

Earth Surface and Interior

Observations and Model Predictions of Arctic Sea Ice Extent

Origin, pathway & fate of "El Niño Water"

Particle trajectory (Gu and Philander, 1997)

Subtropical Cell (STC) (McCreary and Lu, 1994)

Animation of Nino3 water pathway using a passive tracer (yrs 0~10) and its adjoint (yrs -10~0)

(Fukumori et al., 2004, J. Phys. Oceanogr.)

I.Fukumari/JPL

GEOS-5 AGCM with Stratospheric Chemistry

Planned (2009) GH UAS-AVE vortex fragment flight

30 hour flight

Objective 1: sample remaining polar vortex for ozone depleted air

Objective 2: sample polar fragment over Pacific

Objective 3: Coordination with Aura satellite overpass

Objective 4: Pole-to-tropics sampling of air masses

GEOS-5 Used to Evaluate Impact of AIRS in NWP

Traditional Data Impact Studies

Forecast Skill vs. Time

Observation Adjoint Tool

24-hr Forecast Error Reduction vs. Channel

AIRS brings slightly positive impact on forecast skill in Northern Hemisphere; clear positive impact in Southern Hemisphere. Currently, forecast skills are increased when moisture channels from AIRS are not included...

KEY QUESTIONS

- What High-End Computing capabilities are essential to advance SMD science in the next 5-10 years?
- What science and applications demonstrations could be accomplished over the next decade with:
 - Our present HEC capabilities
 - An evolutionary increase in our present capabilities
 - A realistic, but revolutionary change in capabilities
- Advice on the cost/benefit/schedule "sweet spot" for HEC in the 5-year time frame